LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 30-04-2025

B.Com. DEGREE EXAMINATION – **HONOURS**

FOURTH SEMESTER - APRIL 2025

Max.: 100 Marks

UBH 4504 - BUSINESS STATISTICS

Dept. No.

			SECTION A - K1 (CO1)								
	Answer ALL the	e Questions		$(10 \times 1 = 10)$							
1.	True or False										
a)	Arithmetic mean	is always the best mea	sure of central tendency								
b)	Range is the best measure of dispersion										
c)	Correlation alway	vs signifies a cause and	d effect relationship between	the variables.							
d)	The regression lin	nes cut each other at th	e point of average of X and	Y.							
e)	A basic or non-b cost.	asic solution is called	an optimal solution if it mi	nimizes the total transportation							
2.	MCQ										
a)	The measure of v	ariation that is least af	fected by extreme observation	ons is:							
	(i) Range ((ii) Mean Deviation	(iii) standard deviation	(iv) quartile deviation							
b)	The value of $r2 =$	for a particular situati	on is 0.49. What is the coeff	icient of correlation?							
	(i) 0.49 ((ii) 0.7	(iii) 0.07	(iv) cannot be determined							
c)	The Vogel's Appr	roximation method is a	also								
	(i) Unit cost pena	lty method	(ii) Spearman	(iii) Bowley							
d)	The solution to a	transportation problen	n with m- sources and n- des	tinations is feasible, if the							
	number of allocat	tions are:									
	(i) m+n-1 (ii) m+n+1	(iii) m+n	(iv) mxn							
e)	Which of the follo	owing is not associated	d with an LPP?								
	(i) Additivity	(ii) Divisibility	(iii) Proportionality	(iv) Uncertainty							
		S	ECTION A - K2 (CO1)								
	Answer ALL the	e Questions		$(10 \times 1 = 10)$							
3.	Fill in the blanks	S									
a)	Mean deviation is	s least when deviations	s are taken from								
b)	A time series con	sists of data arranged_									
c)	If Coeff. of Sk=0	.8, Median=35, σ = 12,	the mean shall be	_							
d)	can be unrest	cricted in the context of	f an LPP.								
e)	The players in a c	rame are called compe	titors and each player selects	s a to win the game							

4.	Answer the following																		
a)	What is measures of central tendency?																		
b)	Define Correlation.																		
c)	Write a note on quartile deviation																		
d)	Explain the term feasible solution.																		
e)	What is game theory?																		
						S	ECTIO	N B -	K.	3 (C	O2)								
Ansv	wer any	TWC	of t	he foll	owing ir	ı 1	00 wor	ds eac	h.								(2 x 1	0 = 2	0)
5.	Calculate the mean and standard deviation from the following data:																		
	Value		80-8	39	70-79	6	60-69	50-59	9	40-4	19	30-	39	20-	29				
	Freque	encv	2		12	2	22	20		14		4		1					
6.	-	•		ion coe	fficient				on		or the		owi		ata:				
						_1							, , , 11	u					
	X	3		2		-1		6			4		-	2		5			
	Y	5		13		12	2	-1			2		2	0		0			
7.	An inco	omple	te fre	quency	/ distribu	ıtio	on is giv	en be	lov	v:									
	Class 0-10 10-20 20-30 30-40		40	-50	50-60 60		60-7	70	Total										
	Freque	requency 4 16 -					- 6				4		230						
			_	_			_								ode	1S 3	4. Also c	alcula	ate
	the mea	ın usıı	ng En	nperica	ıl relatio	ns	nip betv	veen n	ıea	ın, m	ediai	n and	ı mo	de.					
8.	Fit a tr	end li	ne eq	uation	by the n	net	hod of	least so	qua	ares a	and e	stim	ate t	he ti	end	val	ue:		
	Class		201	1	2012		2013	201	14 2015		20	16	20)17	2018				
	Freque	ency	80		90		92	83		94		99		92	2	10	4		
					•	S	ECTIO	N C –	K	4 (C	O3)								
Ansv	wer any	TWC	of t	he foll	owing ir	ı 1	00 wor	ds eac	h.								(2 x 1	0=2	20)
9.	Calcul	late Pe	earso	n's mea	asure of	ske	ewness	for the	fc	llow	ing o	data:							
	Size		7	8	9	1	.0	11	1	2	13		14						
	Freque	ency	2	11	36	6	54	39	3	9	22		2						
10.	Find the mean deviation about the mean for the following data:																		
	Class 0-10 10-20 20-30					30-4	10	40	-50	50	-60	60	-70						
	Freque	ency	8		12		10	8		3		2		7					
11.	Find tl	he coe	efficie	ent of c	correlation	on	between	ı x and	1 y	fron	n the	foll	owin	g da	ıta:				
	X		10	14	15	2	28 3	35	4	8									
	Y		74	61	50	5	54	43	2	6	1								
	Y		74	61	50	5	54	43	2	6									_

12.	Solve the	transportation	problem	using	VAM
-----	-----------	----------------	---------	-------	-----

Factory	Distribution C	Distribution Centres								
	Bangalore	Bangalore Mumbai Delhi Chennai								
Ahmedabad	190	300	500	100	70					
Ernakulam	700	300	400	600	90					
Hyderabad	400	100	600	200	180					
Demand	50	80	70	140	340					
(Units/day)										

SECTION D – K5 (CO4)

Answer any ONE of the following in 250 words

 $(1 \times 20 = 20)$

- 13. A machine producing either product A or B can produce A by using 2 units of chemicals and 1 unit of a compound and can produce B by using 1 unit of chemical and 2 units of compound. Only 800 units of chemicals and 1000 units of compound are available. The profits available per unit of A and B are Rs.30 and Rs.20 respectively. Draw a suitable diagram to show the feasible region. Also, find the optimum allocation of units between A and B to maximize the total profit. Find the maximum profit.
- 14. A computer while calculating the correlation coefficient between two variables X and Y from 25 pairs of observations obtained the following results:

N=25,
$$\sum x = 125$$
, $\sum y = 100$, $\sum x2 = 650$, $\sum y2 = 460$, $\sum xy = 508$

It was however, discovered at the time of checking that two pairs of observations were not correctly copied. They were taken as (6,14) and (8,6) while the correct values were (8,12) and (6,8).

Prove that the correct value of the correlation coefficient should be 2/3.

SECTION E – K6 (CO5)

Answer any ONE of the following in 250 words

 $(1 \times 20 = 20)$

15. Find the first four central moments for the following frequency distribution:

Size	0	1	2	3	4	5	6	7	8
Frequency	1	8	28	56	70	56	28	8	1

16. Solve the transportation problem by North- West Corner Rule, Least Cost Method and VAM and test the optimality.

Destinations	Origins	Origins							
	A	В	С						
A	6	4	1	50					
В	3	8	7	40					
С	4	4	2	60					
Availability	20	95	35	150					
